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The effect of Earth albedo variation on the pointing and tracking subsystem of a 
planetaly optical communication package is analyzed. By studying the Cramer-Rao bound 
of the tracking error variance, it is shown that, when the Earth albedo is precisely known, 
the variance in spatial tracking error is inversely proportional to the total signal count. In 
contrast, a small uncertainty in the Earth albedo can result in an irreducible error in the 
tracking subsystem. 

1. Introduction 
Accurate spatial acquisition and tracking are critical for the 

operation of free-space optical communication systems. In 
order to maintain the signal power loss to  within an acceptable 
level, tracking accuracy on the order of 1/10 to 1/20 of the 
transmitted beamwidth is generally required. For a system 
operating at 0.5-pm wavelength using a 30-cm aperture, the 
desired pointing accuracy will be on the order of 0.1 prad. 
Since the angular resolution of the optical system is roughly 
equal to its transmitted beamwidth, the narrow pointing re- 
quirement implies that the spatial acquisition subsystem must 
derive a pointing reference to within 10 percent of the mini- 
mal spatial resolution. Because both the transmitter and the 
receiver are typically in motion, the tracking information must 
be derived within a time period during which the receiver may 
move a significant distance within the transmitter field-of-view. 
In some systems, the residual vibration due to the mechanical 
system will be much larger than the desired pointing accuracy. 
For these systems, the tracking information must be obtained 

at a rate that is higher than the vibration frequency so that the 
optical system can effectively compensate for vibration- 
induced error. 

The performance of spatial tracking algorithms has been 
investigated by several authors [ l ]  , [2].  Most of these studies, 
however, were carried out with the assumption that a beacon 
signal is available as a pointing reference. These studies gener- 
ally suggest that the effective pointing error decreases with 
increasing beacon strength or, effectively, with increasing inte- 
gration time. In the latter case it is assumed that the beacon 
strength remains constant so that increasing the integration 
time, i.e., decreasing the tracking loop bandwidth, will result 
in an effective increase of the detector signal-to-noise ratio 
(SNR). In some cases, however, an active pointing beacon can 
be either undesirable or unfeasible. In these cases it may be 
desirable for the transmitter to use the a priori knowledge of 
the receiver to derive the pointing information. For instance, a 
spacecraft may use the sun-lit Earth as a pointing reference 
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and derive the actual receiver location using simple geometric 
rules. This scheme can be particularly attractive for a deep- 
space optical communication system for which the uplink bea- 
con may require several kilowatts of radiated power. 

4 

The problem of deriving a pointing reference is equivalent 
to locating the image of the object on the receiver focal plane. 
For an extended object that can be resolved by the telescope, 
the optimal maximum-likelihood tracking algorithm has been 
derived, and its performance has been extensively investigated. 
The results generally state that, given the known source inten- 
sity distribution, the variance of tracking error will be inversely 
proportional to the detector SNR. Unfortunately, for most 
applications, the source brightness distribution is not precisely 
known. Consequently, there will be an error associated with 
the spatial tracking subsystem. The purpose of this report is to 
analyze the effect of uncertainties in source brightness on the 
spatial tracking subsystem. 

The rest of this paper is organized as follows. Section I1 
describes the conventional maximum-likelihood tracking algo- 
rithm for determining the pointing reference. The effect of 
uncertainties in source brightness will be analyzed in Section 
111 by studying the Cramer-Rao bound on the tracking error 
variance. A typical planetary optical communication package 
using the sun-lit Earth as a pointing reference will then be 
described and the impact of Earth albedo variation on the 
tracking error wdl be studied in Section IV. Finally, the results 
from the study will be summarized in Section V. 

II. Maximum Likelihood Spatial Tracking 
Algorithm 

In this section the Maximum Likelihood (ML) algorithm for 
determining the angular position of the receiver is derived. It 
is assumed that the shape and orientation of the receiver is 
known. The problem of estimating the angular coordinate of 
the receiver is equivalent to estimating the location of the re- 
ceiver image on the receiver focal plane. Without loss of gener- 
ality, this is equivalent to  locating a fixed reference point on 
the image. For simplicity, the reference point is chosen to be 
the geometric center r of the image. Consequently, the prob- 
lem of spatial tracking can be reduced to the problem of esti- 
mating the geometric center given the detector photocount 
statistics and the prior knowledge of the source brightness 
distribution, Z,,(p), where p is the distance to the image center. 

The problem of spatial estimating is complicated by the fact 
that the receiver has a finite spatial resolution. This is because 
the tracking detector, which is typically a charge-coupled de- 
vice (CCD), has discrete spatial cells (pixels) that occupy a 
finite area. Each pixel output represents the total intensity of 
light impinged on the pixel area. Furthermore, because of the 

granularity of the optical signal, the output of the ( i , j ) t h  pixel 
kii will be a Poisson-distributed random variable with a mean 
Aii (r) where 

In writing Eq. ( I ) ,  Zo(p - r) denotes the brightness distribution 
of the image where the geometric center is displaced by an 
amount r ,  and the integral is over the surface of the ( i , j ) f h  
pixel. 

The problem of deriving the transmitter pointing reference 
is therefore reduced to the problem of estimating the deviation 
r from a set of detector photocounts, {kii}. The maximum 
a posteriori (MAP) estimator [3] of the deviation FMAP is given 
by 

If it is assumed that the prior probability distribution of ro is 
uniformly distributed, then the decision rule can be reduced to  
the following maximum-likelihood (ML) rule: 

(3) 

where it is assumed that kij are independent and Poisson- 
distributed with parameter Aij(r), and observed that the log- 
arithmic transformation does not change the maximum of a 
function. The ML decision rule can be further simplified by 
realizing that 

is proportional to the total power received by the receiver, and 
is therefore independent of the location of the geometric cen- 
ter r. Consequently, the ML decision rule can be written as 

(4) 

The performance of the estimator can be estimated by using 
the Cramer-Rao lower bound (CRLB) [ 11 
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where 

- 
F(r)  = kii log hij(r)  

ij E [(Fr + (,FYI 

Given the source intensity distribution, Io (p ) ,  the variance of 
tracking error can be calculated. It should be noted that the 
CRLB is a lower bound on the estimator error. However, it 
provides an analytically tractable expression, and is therefore 
very useful in estimating the performance of the tracking 
system. 

where No is the average number of photons received over the 
tracking sensor, and gij(r) is the fraction of photons that falls 
onto the ( i , j ) f h  pixel. By definition, 

Note that the variance in Eq. (6) is in general a function of 
ro, the actual geometric center. Furthermore, the variance 
depends on both the shape of the image as well as its intensity. 
To study the effect of increasing source intensity, or equiva- 
lently, increasing the integration time, one can normalize the 
receiver count parameter {hi,.(')} as 

= 1 
i j  

Given the above definition, the CRLB can be written as 

r 

It is easily seen that the performance of the traclung sys- 
tem improves with increasing signal power, N o .  The func- 
tion G(ro) in Eq. (8) depends only on the shape of the image, 
and not its intensity. Figure 1 shows the values of G(ro) 

for two very simple cases. For a more general image shape, 
C(ro) is very difficult to calculate. However, it can be seen 
from Eq. (8) that the lower bound in error variance is mini- 
mized when 
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and 

The expressions in Eqs. (9a) and (9b) are greater for images 
with high contrasts, i.e., images that contain pixels with high 
lagi,.(r)/axI and lagij(r)/ayl. Since the reference image is 
usually much brighter than the background, the partial deriva- 
tives are greater near the image border. It follows that the 
CRLB is smaller for images with better defined borders, Le., 
images for which agij /ax and agij lay are large. 

111. Albedo Variation 
The derivation above shows that, when the source intensity 

distribution is known, the variance in estimating the image 
location decreases linearly with increasing signal power. For a 
sufficiently bright source, the variance is negligible. 

Unfortunately, the derivation that leads to Eq. (8) assumes 
that the exact source intensity distribution Io(r) is known at 
the receiver. In some cases, the intensity distribution of the 
receiver can be quite unpredictable. For example, for a deep- 
space vehicle using the sun-lit Earth as the pointing reference, 
the albedo variation of the Earth can be caused by weather 
patterns and changing surface conditions. Furthermore, these 
conditions are in general time-varying so that they cannot be 
expected to remain constant. 

In order to quantify the effect of intensity uncertainty on 
the spatial tracking subsystem, some assumptions on the inten- 
sity error distribution are required. For this analysis, it is 
assumed that the estimated source intensity distribution ?(p )  
differs from the actual source intensity I o ( p )  by a small 
amount Zl(p). Furthermore, it will be assumed that I l ( p )  is a 
zero-mean Gaussian random process with an autocorrelation 
function 

The maximum likelihood estimator must estimate the loca- 
tion of the image based on an incomplete estimate of the 
source distribution. In other words, the estimate 3 for the 
image center can be written as 

where F’(r) = log [P( {k i j } l r ,  I^@))] is the likelihood function, 
and we have used the fact that a logarithmic transformation 
does not affect the location of a functional maximum. 

Given the formulation of the estimator in Eq. (1 I) ,  the vari- 
ance of the estimation error can again be given in terms of its 
Cramer-Rao lower bound as in [ l ]  

(12) 

The expectation in Eq. (12) is, in general, very complicated 
since the detector photocounts { kij}  are conditional Poisson- 
distributed random variables. Given the estimated intensity 
?(p), the actual source intensity distribution Zo(p) can be 
modeled as a random variable with mean ?(p) .  That is, the 
mean photocount expected over the ( i , j ) r h  pixel, X i j ,  is a ran- 
dom variable with mean 
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h 

A,(r) = l. I^(p - r )  d2  r 

11 

When the source intensity is sufficiently high, or over a suffi- 
ciently long integration time, the fluctuation in the Poisson 
count statistics will be small compared to its mean. In this 
case one can approximate the detector photocount in Eq. (1 1) 
by its mean value, and the likelihood function in Eq. (1 1) can 
be reduced to  

By using this approximation, the probability given in Eq. (1 1) 
can be interpreted as the probability of receiving Aj!(ro) given 
the source intensity distribution {%, (p)} .  Since it is assumed 
that I o @ )  differs from 7 ( p )  by a zero-mean Gaussian process 
I l ( p ) ,  it follows that the probability in Eq. (14) can be written 
as 

exp [-+E ( A j j  
i j,Qm 

where M is the total number of pixels used in the decision, and 
and Iuij,Qm I denote the matrix inverse and the determi- 

nant of the covariance matrix uij ,Qm, respectively. The ele- 
ments of the covariance matrix can be given by 

0.. v,Qm ( r )  = ( ( x i j ( r )  - A ; j ( r ) ) ( ~ ~ m ( r ) - A Q m ( r ) ) )  

By differentiating the llkelihood function in Eq. (14) and 
taking the expectation values, the Cramer-Rao bound of the 
estimator error variance can be given in terms of Eq. (12) (see 
Appendix) where 

Equations (12) and (17) together present an analytical form 
of the mean square estimator error. Given the estimated in- 
tensity pattern 7 ( p ) ,  and the intensity correlation function 
@ ( p ,  p ' ) ,  the lower bound for the variance in estimating the 
image location can be calculated. Unfortunately, for general 
distributions of T i p )  and @ ( p ,  p ' ) ,  the expressions in Eqs. 
(17a-c) are very difficult to evaluate. In order to obtain some 
insight into the functional dependence of tracking error vari- 
ance and the source intensity error, some simplifications are 
required. In the following we shall present several simple cases 
that wdl illustrate these dependencies. 

Example 1 : White intensity noise with spectral density y2. 
That is, 

where A is the area of a pixel element, and 6(x) is the Dirac 
delta function. An example of this type of intensity uncer- 
tainty is the random dark counts from the tracking detector. 
By using Eq. (16), the correlation matrix can be calculated. 
The result is 
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where 6 j j  is the Kronecker delta. By substituting Eq. (20) into 
Eqs. (17 a-c), and using the fact that the u~~,~,,, variables do 
not depend on r ,  the CRLB can be reduced to 

Note that even though the CRLB still depends linearly on y2,  
the lower bound no longer depends on the total detector SNR. 
Consequently, Eq. (22) represents an irreducible error floor 
for the estimator. For the simple test patterns shown in Fig. 1, 
the magnitude of the CRLB can be easily calculated to be 
y Z ( b  + ~ u ) ~ / u  and yz r2 u2/2, respectively. Var(l?-rol) 2 

Y2 

where the total detector SNR, No,  is factored out by making 
the substitution Aij(r) = No gij(r). It is easily seen from Eq. (20) 
that the variance in estimating the image location is directly 
proportional to the uncertainties in source intensity distribu- 
tion y2. Furthermore, the variance of the estimator error de- 
creases with increasing No and, at a very high signal count, the 
variance is negligible. 

Example 2: White intensity fluctuation with spectral density 
that is proportional to the total signal intensity. In other 
words, 

In t h s  case the uncertainty in image brightness is proportional 
to the intensity of the image. An example of this type of in- 
tensity uncertainty is the unknown albedo variation of the 
source. An increase in the integration time at the tracking de- 
tector will only result in a proportional increase of the uncer- 
tainty. Under this condition, the CRLB reduces to 

Var(13- rol) 2 

IV. Tracking System Using Sun-Lit Earth as 
a Pointing Reference 

In a typical spatial tracking subsystem, the transmitter 
pointing information is derived from the image location of the 
reference source. The reference source can be either an uplink 
beacon laser, or the sun-lit Earth. The reference signal is re- 
ceived by the telescope and, after spatial and frequency filter- 
ing to cut down the background noise, is focused onto the 
tracking detector. The tracking detector is usually a focal- 
plane array which spans the field-of-view (FOV) of the receiv- 
ing optics, and can be implemented using a large-format CCD. 

Deriving the angular coordinate of the reference source is 
equivalent to determining the position of its image. Since ob- 
jects with angular separation less than the resolution limits 
cannot be resolved by the receiving optics, it is generally desir- 
able to design the optics such that the pixel size on the focal 
plane array corresponds to the resolution limit of the tele- 
scope. Such a design provides maximum spatial information 
with a minimum number of pixels. For a spacecraft at a dis- 
tance of 2.5 AU using a IO-cm transmitter, the image of the 
Earth will span roughly 4-5 pixels. The required pointing 
accuracy, on the other hand, is less than 1/10 of the trans- 
mitted beamwidth. Since the angular resolution of the tele- 
scope is equivalent to the minimal divergence of the trans- 
mitted optical signal, deriving the desired pointing accuracy of 
1 / l o  the beamwidth is therefore equivalent to locating the 
position of the receiving station to  within 1/10 of a pixel size 
based on the Earth image on the focal plane array. 

When the intensity distribution of the pointing reference is 
known, as would be the case when an uplink beacon is used, 
the performance of the receiver is given by Eq. (6) .  The ex- 
pected detector SNR, No, can be calculated uskg simple link 
analysis. By using the additional assumption that atmospheric 
scattering limits the angular divergence of the uplink beacon to  
about 20 p a d ,  the detector SNR can be approximated by 

Y2 ij 1 
4 = 5 X IO2 90: T/z2 (23) 

where P, is the beacon power in watts, DR is the receiver diam- 
eter in meters, T is the integration time, and z is the link dis- 

r =r  
O 

tance in AUs. Equation (23) was derived by assuming a 532-nm 
uplink beacon, and that the losses in optics and detector are (22) 
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negligible. The actual signal count can be much lower than 
that given by Eq. (23) due to these losses. 

It is easily seen from Eq. (23) that, for a tracking detector 
operating at 1 KHz using a 10-cm diameter receiver at 1 AU, 
the required signal power for a 20-dB SNR is 20 KW! Obvi- 
ously, such a high power can be very costly to  achieve. And 
if higher SNR is desired, the required beacon power can be 
even higher. 

An alternative is to  use the sun-lit Earth as a pointing refer- 
ence. Sunhght reflection off the Earth can provide a large 
amount of signal power at the tracking detector. In fact, a sim- 
ple calculation shows that a detector SNR hgher than los can 
be easily achieved. As a result, tracking error due to Poisson- 
count statistics is negligible. Unfortunately, the albedo of the 
Earth cannot be specified precisely. Cloud-cover can alter the 
surface reflectivity significantly, and a snow-covered surface 
can reflect up to one order of magnitude more sunlight than 
an exposed terrain. To further complicate the problem, these 
conditions are changing in time so that it is almost impossible 
to derive an accurate estimate of the Earth’s albedo. Since the 
uncertainty is inherent to the brightness of the source, increas- 
ing the integration will only result in corresponding increases 
in that uncertainty. Consequently, there will be an irreducible 
error floor on the tracking system performance. 

The actual impact of albedo uncertainty on the tracking 
system performance depends, of course, on the magnitude of 
the uncertainty and its spatial correlation. In general, the 
CRLB given by Eqs. (12) and (17) is very difficult to com- 
pute. For the simple test patterns shown in Fig. 1, a minimal 
standard deviation of 0.1 pixel requires that y be less than 
0.1 da / (b  t 2 ~ ) ~ a n d  0.045/a, respectively. If these examples 
are representative, then we will need to know the intensity to 
within 10 percent of the true value in order to limit the point- 
ing error to within 0.1 pixel. Since the average Earth albedo 
variation is much more than 10 percent, a simple ML estimator 
cannot be expected to achieve the desired tracking accuracy. 

V. Conclusions 
Because of the large link distance involved, it is desirable 

that the optical communication package aboard a planetary 
spacecraft derive its pointing reference directly from the 
image of the sun-lit Earth on the tracking detector. Given the 
detector photocounts and the prior knowledge of the image 
intensity distribution, the maximum-likelihood spatial acqui- 
sition algorithm can be derived. The performance of the 
maximum-likelihood algorithm was analyzed by calculating 
the Cramer-Rao bound on the variance of acquisition error. It 
is shown that, when the intensity distribution of the pointing 
reference can be precisely characterized, the variance in esti- 
mating the receiver angular location decreases with increasing 
image intensity or detector exposure time. On the other hand, 
when the intensity distribution is not known in sufficient 
detail, the spatial tracking error variance will not decrease in- 
definitely with increasing exposure time. For a planetary 
spacecraft using the Sun-lit Earth as a pointing reference, the 
Earth‘s albedo cannot be precisely specified because of chang- 
ing weather and ground conditions. Consequently, the ML 
algorithm which derives the pointing reference based on the 
detector photocounts cannot be expected to provide an accu- 
rate pointing reference. 

It should be noted, however, that the results presented in 
this study were derived by assuming that the receiver derives 
its pointing reference based on a single frame of the image. In 
other words, the receiver estimates the image location, r ,  
based on the receiver_count statistics and an assumed source 
intensity distribution, I@) .  When multiple images of the point- 
ing reference are available, the receiver can then jointly esti- 
mate the true source distribution, I,,@), and the image loca- 
tion, r .  For such a receiver, the tracking system performance 
will not be limited by the intensity uncertainty. 111 fact, with a 
sufficiently large number of look angles, one could derive an 
estimate ?(p) which closely approximates I, ,(p) and, conse- 
quently, the variance in estimating r could be reduced to an 
acceptable level. 
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7 2  a 2  G (ro) = - 
8 

Fig. 1. The value of G(r,) for two simple examples of source 
intensity distributions over the detector focal plane. The solid grids 
represent the CCD pixels, and the shaded areas represent the image 
of the pointing reference. The image intensities are assumed to be 
uniformly distributed. 
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Appendix 

Derivation of Equation (16) 

The logarithm of the joint probability distributionP({ hij}  I r , Z ( p ) ) ,  is 

By expanding E [(aln(P({Xij}I r ,  Z (p ) ) /ax )2 ]  into an integral form, and using the fact that 

By differentiating Eq. (A-1) and using the fact that E [aP(Xijl r,l^(p))/ax] is equal to  zero for all r ,  one can show that 

= o  

In deriving Eq. (A-3), we have used the assumption that { X i , }  are Gaussian distributed with mean {xi,}, 
By differentiating Eq. (A-1) and taking the expectation values of A,, Eq. (A-2) is reduced to 

(‘4-3) 
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By substituting Eq. (A-3) into (A-4), it is seen that 

(A-5) 

Similarly, it can be shown that 
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